Research on the Development and Application of a Deep Learning Model for Effective Management and Response to Harmful Algal Blooms

Author:

Kim Jungwook1,Kim Hongtae1,Kim Kyunghyun1ORCID,Ahn Jung Min1

Affiliation:

1. Water Quality Assessment Research Division, Water Environment Research Department, National Institute of Environmental Research, Incheon 22689, Republic of Korea

Abstract

Harmful algal blooms (HABs) caused by harmful cyanobacteria adversely impact the water quality in aquatic ecosystems and burden socioecological systems that are based on water utilization. Currently, Korea uses the Environmental Fluid Dynamics Code-National Institute of Environmental Research (EFDC-NIER) model to predict algae conditions and respond to algal blooms through the HAB alert system. This study aimed to establish an additional deep learning model to effectively respond to algal blooms. The prediction model is based on a deep neural network (DNN), which is a type of artificial neural network widely used for HAB prediction. By applying the synthetic minority over-sampling technique (SMOTE) to resolve the imbalance in the data, the DNN model showed improved performance during validation for predicting the number of cyanobacteria cells. The R-squared increased from 0.7 to 0.78, MAE decreased from 0.7 to 0.6, and RMSE decreased from 0.9 to 0.7, indicating an enhancement in the model’s performance. Furthermore, regarding the HAB alert levels, the R-squared increased from 0.18 to 0.79, MAE decreased from 0.2 to 0.1, and RMSE decreased from 0.3 to 0.2, indicating improved performance as well. According to the results, the constructed data-based model reasonably predicted algae conditions in the summer when algal bloom-induced damage occurs and accurately predicted the HAB alert levels for immediate decision-making. The main objective of this study was to develop a new technology for predicting and managing HABs in river environments, aiming for a sustainable future for the aquatic ecosystem.

Funder

National Institute of Environmental Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Harmful Algal Blooms Prediction Model: Dealing With Limited Datasets;2023 International Conference on Computer, Control, Informatics and its Applications (IC3INA);2023-10-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3