Oscillation Flow Dam Operation Method for Algal Bloom Mitigation

Author:

Kim JungwookORCID,Kwak Jaewon,Ahn Jung Min,Kim Hongtae,Jeon Jihye,Kim KyunghyunORCID

Abstract

Green algae play an important role in ecosystems as primary producers, but they can cause algal blooms, which are socio-environmental burdens as responding to them requires water resources from dam reservoirs. This study proposes an alternative for reducing algal blooms through dam operation without using additional water resources. A novel oscillation flow concept was suggested: oscillating discharge of dam for irregular flow. To examine its effect, the Environmental Fluid Dynamics Code—National Institute of Environment Research (EFDC-NIER) model was constructed and calibrated for the Namhan River, South Korea, from downstream of the Chungju Dam to downstream of Gangcheon Weir. The water quality in the study area were simulated and analyzed for August 2019, which is when the largest number of harmful cyanobacteria had been reported in recent years. Our results showed that the oscillation flow produced significant variance of flow velocity, and algal bloom density in the Namhan River was reduced by 20–30% through the operation of the Chungju Dam. However, further study and investigation are required before practical application.

Funder

National Institute of Environmental Research

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference45 articles.

1. Restoration and Management of Lakes and Reservoirs;Cooke,2005

2. Operational water quality forecast for the Yeongsan river using EFDC model;Shin;J. Korean Soc. Water Environ.,2017

3. A Study on the Design of Artificial Stream for Riverbed Filtration in Multi-purpose Filtration Pond

4. A Proposition for the Removal of Algae and Phosphorus from River Water Using Multi-Purpose filtration pond

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3