Combined Experimental and CFD Approach of Two-Phase Flow Driven by Low Thermal Gradients in Wine Tanks: Application to Light Lees Resuspension

Author:

Bogard FabienORCID,Beaumont FabienORCID,Vasserot Yann,Simescu-Lazar Florica,Nsom Blaise,Liger-Belair GérardORCID,Polidori Guillaume

Abstract

In winemaking, clarification and stabilization are the processes by which insoluble matter suspended in the wine (called lees) is removed before bottling. The light lees represent 2–4% of the total wine volume. Under certain circumstances, resuspension of lees may occur. The resuspension of lees has been attributed to temperature variations between the wine stored in tanks and the environment of the cellar. From in situ, laboratory-scale studies involving laser tomography techniques, it was shown that low (positive or negative) thermal gradients between a wine tank containing light lees and its external environment induce mass transfer by natural convection. To extrapolate these findings to full-scale tanks, an Eulerian-Eulerian multiphase CFD model was applied to simulate the two-phase flow behavior as a function of temperature variations on a 24–h cycle. Numerical temperature and time-dependent flow patterns of both wine and lees confirm that low thermal gradients induce sufficient fluid energy to resuspend the lees, thus showing that the laboratory results can be extrapolated to full-scale tanks.

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health(social science),Microbiology,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3