Abstract
The dielectric properties of six refined edible oils with different fatty-acid compositions were determined for oils incubated at 180 °C up to 40 h. The oil degradation was evaluated by the dielectric dispersion and dielectric loss in the frequency range from 40 Hz to 2 MHz at 25 °C, refractive index, density, saponification number, and specific absorption coefficient at 232 and 268 nm. The dependence of the dielectric properties on frequency has been evaluated with Corach, Cole–Cole, and the universal power law models, giving the novel strategies for the interpretation of the dielectric spectra of thermally treated oils. The derived parameters—the dielectric constant, the electrical conductivity, the relaxation time τ and the exponents α, p, and n—are discussed with respect to the increased oxidation evidenced by specific absorption coefficients and polar products, as measured by the dielectric constant of the thermally treated oils. The specific refraction, specific polarization, orientation polarization, and dipole moment were determined using Lorenz–Lorentz, Debye and Onsager relationship. All above parameters obtained increased during the thermal treatment, except specific refraction, the electrical conductivity and the relaxation time. The dielectric constant-macroscopic parameter was compared with microscopic parameter polarization and dipole moment; the linear dependence was found to be R 2 = 0.971 .
Subject
Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献