An Impartial Semi-Supervised Learning Strategy for Imbalanced Classification on VHR Images

Author:

Sun Fei,Fang Fang,Wang RunORCID,Wan BoORCID,Guo Qinghua,Li Hong,Wu Xincai

Abstract

Imbalanced learning is a common problem in remote sensing imagery-based land-use and land-cover classifications. Imbalanced learning can lead to a reduction in classification accuracy and even the omission of the minority class. In this paper, an impartial semi-supervised learning strategy based on extreme gradient boosting (ISS-XGB) is proposed to classify very high resolution (VHR) images with imbalanced data. ISS-XGB solves multi-class classification by using several semi-supervised classifiers. It first employs multi-group unlabeled data to eliminate the imbalance of training samples and then utilizes gradient boosting-based regression to simulate the target classes with positive and unlabeled samples. In this study, experiments were conducted on eight study areas with different imbalanced situations. The results showed that ISS-XGB provided a comparable but more stable performance than most commonly used classification approaches (i.e., random forest (RF), XGB, multilayer perceptron (MLP), and support vector machine (SVM)), positive and unlabeled learning (PU-Learning) methods (PU-BP and PU-SVM), and typical synthetic sample-based imbalanced learning methods. Especially under extremely imbalanced situations, ISS-XGB can provide high accuracy for the minority class without losing overall performance (the average overall accuracy achieves 85.92%). The proposed strategy has great potential in solving the imbalanced classification problems in remote sensing.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3