Enhancement of Wood Coating Properties by Adding Silica Sol to UV-Curable Waterborne Acrylics

Author:

Zhu Yuding1,Zhu Wenkai1ORCID,Li Zequn1,Feng Yuan2ORCID,Qi Wei1,Li Song1,Wang Xiaoyu3,Chen Meiling2ORCID

Affiliation:

1. College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China

2. Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China

3. Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai’an 223300, China

Abstract

In recent years, with the development of the coating industry and the increasing awareness of environmental protection, the modification of waterborne wood coatings has become the focus of research. Generally, the system composed of silica sol modification and UV curing can make up for the defects of poor mechanical properties, low hardness, and slow curing speeds of waterborne wood coatings. Herein, we used silica sol-reinforced UV-curable waterborne acrylic wood coatings and tested the related physical properties of the coatings. FT-IR analysis showed that the Si-O-Si bond appeared, indicating that the silica sol was successfully grafted onto the waterborne acrylic molecular chain. The results showed that the mechanical properties of the UV-curable waterborne acrylic wood coating film reached their optimum when the content of silica sol was 1 wt%, the number of UV lamps was 3, and the drying time was 20 min. The corresponding values for wear resistance, hardness, adhesion, and impact strength were 0.106 g (high level), grade 3, and 90 kg·cm, respectively. However, when the content of silica sol is greater than 1 wt%, the related physical properties of the coatings will decrease. The results showed that the gloss of the coating decreased with increasing silica sol content. When the silica sol content was 2 wt%–6 wt%, the coating showed a matte gloss. This present work shows that the modification process is simple, controlled, inexpensive, and meets the demand for UV-curable waterborne acrylic wood coatings in daily life.

Funder

Nanjing Science and Technology Innovation Project

Research and Development Funding of Zhejiang A&F University

Natural Science Foundation of Jiangsu Province of China

National Natural Science Foundation of China

Natural Science Foundation of the Higher Education Institutions of Jiangsu Province

Publisher

MDPI AG

Subject

Forestry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3