Green, Sustainable Architectural Bamboo with High Light Transmission and Excellent Electromagnetic Shielding as a Candidate for Energy-Saving Buildings

Author:

Wang Jing,Wu Xinyu,Wang Yajing,Zhao Weiying,Zhao Yue,Zhou Ming,Wu Yan,Ji Guangbin

Abstract

AbstractCurrently, light-transmitting, energy-saving, and electromagnetic shielding materials are essential for reducing indoor energy consumption and improving the electromagnetic environment. Here, we developed a cellulose composite with excellent optical transmittance that retained the natural shape and fiber structure of bamboo. The modified whole bamboo possessed an impressive optical transmittance of approximately 60% at 6.23 mm, illuminance of 1000 luminance (lux), water absorption stability (mass change rate less than 4%), longitudinal tensile strength (46.40 MPa), and surface properties (80.2 HD). These were attributed to not only the retention of the natural circular hollow structure of the bamboo rod on the macro, but also the complete bamboo fiber skeleton template impregnated with UV resin on the micro. Moreover, a multilayered device consisting of translucent whole bamboo, transparent bamboo sheets, and electromagnetic shielding film exhibited remarkable heat insulation and heat preservation performance as well as an electromagnetic shielding performance of 46.3 dB. The impressive optical transmittance, mechanical properties, thermal performance, and electromagnetic shielding abilities combined with the renewable and sustainable nature, as well as the fast and efficient manufacturing process, make this bamboo composite material suitable for effective application in transparent, energy-saving, and electromagnetic shielding buildings.

Funder

Shanghai Jiao Tong University

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Surfaces, Coatings and Films,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3