Design of Predictive Models to Estimate Corrosion in Buried Steel Structures

Author:

Arriba-Rodríguez Lorena-de,Rodríguez-Montequín VicenteORCID,Villanueva-Balsera JoaquínORCID,Ortega-Fernández Francisco

Abstract

Corrosion is the main mechanism of the degradation of steel structures buried in the soil. Due to its aggressiveness, the material gradually loses thickness until the structure fails, which may cause serious environmental problems. The lack of a clearly established method in the design leads to the need for conservative excess thicknesses to ensure their useful life. This implies inefficient use of steel and an increase in the cost of the structure. In this paper, four quantitative and multivariate models were created to predict the loss of buried steel as a function of time. We developed a basic model, as well as a physical and an electrochemical one, based on multivariate adaptive regression spline (MARS), and a simpler model for comparative purposes based on clusters with Euclidean distance. The modeling was synthesized in a computer tool where the inputs were the characteristics of the soil and the time and the outputs were the loss of thickness of each predictive model and the description of the most similar real tests. The results showed that in all models, for relative errors of 10%, over 90% of predictions were correct. In addition, a real example of the operation of the tool was defined, where it was found that the estimates of the models allow the necessary optimization of steel to fulfill its useful life.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference38 articles.

1. Global needs for knowledge dissemination, research, and development in materials deterioration and corrosion control;Schmitt;World Corros. Organ.,2009

2. Pipeline Corrosion and Cathodic Protection: A Practical Manual for Corrosion Engineers, Technicians, and Field Personnel;Parker,1984

3. Tests on the corrosion of buried ferrous metals;Hudson;J. Iron Steel Inst.,1942

4. The Bureau of Standards Soil-Corrosion Investigation

5. Corrosion of Mild Steel Buried Underground for 3 Years in Different Soils of Varying Textures

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3