Corrosion Predictive Model in Hot-Dip Galvanized Steel Buried in Soil

Author:

Arriba-Rodríguez Lorena-De1,Ortega-Fernández Francisco1,Villanueva-Balsera Joaquín M.1ORCID,Rodríguez-Montequín Vicente1ORCID

Affiliation:

1. Project Engineering Area, University of Oviedo, C/Independencia 13, 33004 Oviedo, Spain

Abstract

Corrosion is one of the main concerns in the field of structural engineering due to its effect on steel buried in soil. Currently, there is no clearly established method that allows its calculation with precision and ensures the durability of this type of structures. Qualitative methods are commonly used rather than quantitative methods. The objective of this research is the development of a multivariate quantitative predictive model for estimating the loss of thickness that will occur in buried hot-dip galvanized steel as a function of time. The technique used in the modelling is the Adaptive Regression of Multivariate Splines (MARS). The main drawback of this kind of studies is the lack of data since it is not possible to have a priori the corrosive behaviour that the buried material will have as a function of time. To solve this issue, a solid and reliable database was built from the analysis and treatment of the existing literature and with the results obtained from a predictive model to estimate the thickness loss of ungalvanized steel. The input variables of the model are 5 characteristics of the soil, the useful life of the structure, and the loss of corroded ungalvanized steel in the soil. This last data is the output variable of another previous predictive model to estimate the loss of thickness of bare steel in a soil. The objective variable of the model is the loss of thickness that hot-dip galvanized steel will experience buried in the ground and expressed in g/m2. To evaluate the performance and applicability of the proposed model, the statistical metrics RMSE, R2, MAE, and RAE and the graphs of standardized residuals were used. The results indicated that the model offers a very high prediction performance. Specifically, the mean square error was 290.6 g/m2 (range of the objective variable is from 51.787 g/m2 to 5950.5 g/m2), R2 was 0.96, and from a relative error of 0.14, the success of the estimate was 100%. Therefore, the use of the proposed predictive model optimizes the relationship between the amount of hot-dip galvanized steel and the useful life of the buried metal structure.

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3