Application of Deep Learning Networks to Segmentation of Surface of Railway Tracks

Author:

Bojarczak PiotrORCID,Nowakowski WaldemarORCID

Abstract

The article presents a vision system for detecting elements of railway track. Four types of fasteners, wooden and concrete sleepers, rails, and turnouts can be recognized by our system. In addition, it is possible to determine the degree of sleeper ballast coverage. Our system is also able to work when the track is moderately covered by snow. We used a Fully Convolutional Neural Network with 8 times upsampling (FCN-8) to detect railway track elements. In order to speed up training and improve performance of the model, a pre-trained deep convolutional neural network developed by Oxford’s Visual Geometry Group (VGG16) was used as a framework for our system. We also verified the invariance of our system to changes in brightness. To do this, we artificially varied the brightness of images. We performed two types of tests. In the first test, we changed the brightness by a constant value for the whole analyzed image. In the second test, we changed the brightness according to a predefined distribution corresponding to Gaussian function.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3