Variability and Plasticity in Cuticular Transpiration and Leaf Permeability Allow Differentiation of Eucalyptus Clones at an Early Age

Author:

Carignato André,Vázquez-Piqué JavierORCID,Tapias Raúl,Ruiz Federico,Fernández ManuelORCID

Abstract

Background and Objectives. Water stress is a major constraining factor of Eucalyptus plantations’ growth. Within a genetic improvement program, the selection of genotypes that improve drought resistance would help to improve productivity and to expand plantations. Leaf characteristics, among others, are important factors to consider when evaluating drought resistance evaluation, as well as the clone’s ability to modify leaf properties (e.g., stomatal density (d) and size, relative water content at the time of stomatal closure (RWCc), cuticular transpiration (Ec), specific leaf area (SLA)) according to growing conditions. Therefore, this study aimed at analyzing these properties in nursery plants of nine high-productivity Eucalyptus clones. Material and Methods: Five Eucalyptus globulus Labill. clones and four hybrids clones (Eucalyptus urophylla S.T. Blake × Eucalyptus grandis W. Hill ex Maiden, 12€; Eucalyptus urograndis × E. globulus, HE; Eucalyptus dunnii Maiden–E. grandis × E. globulus, HG; Eucalyptus saligna Sm. × Eucalyptus maidenii F. Muell., HI) were studied. Several parameters relating to the aforementioned leaf traits were evaluated for 2.5 years. Results: Significant differences in stomatal d and size, RWCc, Ec, and SLA among clones (p < 0.001) and according to the dates (p < 0.001) were obtained. Each clone varied seasonally the characteristics of its new developing leaves to acclimatize to the growth conditions. The pore opening surface potential (i.e., the stomatal d × size) did not affect transpiration rates with full open stomata, so the water transpired under these conditions might depend on other leaf factors. The clones HE, HG, and 12€ were the ones that differed the most from the drought resistant E. globulus control clone (C14). Those three clones showed lower leaf epidermis impermeability (HE, HG, 12€), higher SLA (12€, HG), and lower stomatal control under moderate water stress (HE, HG) not being, therefore, good candidates to be selected for drought resistance, at least for these measured traits. Conclusions: These parameters can be incorporated into genetic selection and breeding programs, especially Ec, SLA, RWCc, and stomatal control under moderate water stress.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3