Adsorption of particulate matter and uptake of metal and non-metal elements from PM in leaves of Pinus densiflora and Quercus acutissima: a comparative study

Author:

Lee Jongkyu,Kwak Myeong Ja,Woo Su Young

Abstract

Trees can serve as effective biofilters of Particulate matter (PM) pollution, making them valuable for managing air pollution and promoting public health. Leaves of trees can reduce PM through absorption, adsorption, and fallout mechanisms, which are influenced by species-specific characteristics and environmental factors. Although several studies have explored the impact of various leaf characteristics on their ability to adsorb PM from field conditions, few have been conducted in controlled chambers to analyze the adsorption of PM on leaf surfaces and the uptake of metal and non-metal elements from PM on leaves. To fill these knowledge gaps, this study investigated the PM adsorption and leaf characteristics of two different tree species, Pinus densiflora (an evergreen coniferous species) and Quercus acutissima (a deciduous broad-leaved species) under controlled conditions in a PM exposure chamber with a target concentration of 300 μg m−3. The main aim of this study was to measure and compare the rate of PM component (metal and non-metal elements) uptake in two species and investigate the leaf characteristics that contribute to PM adsorption. We investigated the relationship between PM adsorption and physiolog, micro-morphology, and chemical properties of the leaf surface in two species. This study used a Pearson’s correlation analysis and a principal component analysis (PCA) to evaluate correlation between PM adsorption and leaf characteristics and uptake of metal/non-metal elements in PM on leaves. This result showed that leaf characteristics such as stomatal size, leaf roughness, and wax content played a crucial role in PM10 adsorption, while physiological factors like transpiration and leaf boundary layer conductance were identified as important determinants of PM2.5 adsorption on plant leaves. It also observed significant variations in the uptake of aluminum, iron, magnesium, phosphorus, and sulfur. This study not only advances our understanding of the mechanisms behind PM adsorption by tree leaves but also underscores the importance of selecting appropriate tree species based on their leaf characteristics for urban forestry and green infrastructure projects. The ability to strategically use tree species for PM pollution mitigation highlights a practical approach to enhancing environmental sustainability and public health.

Funder

National Research Foundation of Korea

Publisher

Frontiers Media SA

Subject

Nature and Landscape Conservation,Environmental Science (miscellaneous),Ecology,Global and Planetary Change,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3