Application of Adaptive Filtering Based on Variational Mode Decomposition for High-Temperature Electromagnetic Acoustic Transducer Denoising

Author:

Zhao Shuaijie,Zhou Jinjie,Liu Yao,Zhang Jitang,Cui Jie

Abstract

In high-temperature environments, the signal-to-noise ratio (SNR) of the signal measured by electromagnetic acoustic transducers (EMAT) is low, and the signal characteristics are difficult to extract, which greatly affects their application in practical industry. Aiming at this problem, this paper proposes the least mean square adaptive filtering interpolation denoising method based on variational modal decomposition (AFIV). Firstly, the high-temperature EMAT signal was decomposed by variational modal decomposition (VMD). Then the high-frequency and low-frequency noises in the signal were filtered according to the excitation center frequency. Following the wavelet threshold denoising (WTD) for the noise component after VMD decomposition was carried out. Afterward, the noise component and signal component were connected by an adaptive filtering process to achieve further noise reduction. Finally, cubic spline interpolation was used to smooth the noise reduction curve and obtain the time information. To verify the effectiveness of the proposed method, it was applied to two kinds of ultrasonic signals from 25 to 700 °C. Compared with VMD, WTD, and empirical mode decomposition denoising, the SNR was increased by 2 times. The results show that this method can better extract the effective information of echo signals and realize the online thickness measurement at high temperature.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3