An Adaptive Noise Reduction Method for High Temperature and Low Voltage Electromagnetic Detection Signals Based on SVMD Combined with ICEEMDAN

Author:

Ge Zhizeng12,Zhou Jinjie12,Shen Xingquan12,Zhang Xingjun12,Qi Caixia12

Affiliation:

1. School of Mechanical Engineering, North University of China, Taiyuan 030051, China

2. Shanxi Key Laboratory of Intelligent Equipment Technology in Harsh Environment, Taiyuan 030051, China

Abstract

In view of the low signal-to-noise ratio (SNR) of shear wave electromagnetic acoustic transducers (EMAT) in the detection of high-temperature equipment, the use of low excitation voltage (LEV) further deteriorates the detection results, resulting in the echo signal containing defects being drowned in noise. For the extraction of the EMAT signal, an adaptive noise reduction method is proposed. Firstly, the minimum envelope entropy is taken as the fitness function for the Harris Hawks Optimizer (HHO), and the optimal successive variational mode decomposition (SVMD) balance parameter is searched by HHO adaptive iteration to decompose LEV EMAT signals at high temperatures. Then the filter is carried out according to the excitation center frequency and correlation coefficient threshold function. Then, improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) is used to decompose the filtered signal and combine the kurtosis factor to select the appropriate intrinsic mode functions. Finally, the signal is extracted by the Hilbert transform. In order to verify the effectiveness of the method, it is applied to the low-voltage detection of 40Cr from 25 °C to 700 °C. The results show that the method not only suppresses the background noise and clutter noise but also significantly improves the SNR of EMAT signals, and most importantly, it is able to detect and extract the 2 mm small defects from the echo signals. It has great application prospects and value in the LEV detection of high-temperature equipment.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3