Numerical Analysis of Radiative Heat Transfer and Direct Reduction of Three-Dimensional Multilayer Ellipsoidal Carbon-Containing Pellet Unit in the Rotary Hearth Furnace

Author:

Li Nan,Wang Feng

Abstract

It is very important for a multilayer pellet bed to have a proper description of the radiant heat transfer and direct reduction process in the rotary hearth furnace. Ellipsoidal pellets may also be used in industrial production. The research on this ellipsoidal pellet bed will provide comprehensive data support for the production process. Besides, the view factor is one of the important factors affecting the heat transfer of the multilayer pellet bed. It is of great significance to study its value and distribution. In this study, the effects of the gas field and the bottom of the furnace on the direct reduction of multilayer ellipsoidal pellets were considered. The local environmental viewing angle coefficient in the model was obtained through the mechanism calculation method, which is more accurate than the calculation through the radiation exchange network. Furthermore, the porosity variation in the pellet during the direct reduction process was also considered. According to the calculation, it was found that the higher initial temperature at the furnace bottom is beneficial to increase the degree of metallization (DOM) and zinc removal rate (ZRR) for all pellets, and is more advantageous to the lower pellets in the material bed. Nevertheless, the reduction degree of the lower pellets is still smaller than that of the upper pellets. The results also show that increasing the offset ξ has a greater effect on increasing the ambient view factor and each position reduction degree in the ellipsoidal pellets layer. Results can be applied for the optimization of pellets distribution in a rotary hearth furnace.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3