Numerical analysis of the carbon containing pellets direct reduction process

Author:

Li Nan,Wang Feng,Zhang Wei

Abstract

In view of the carbon-containing composite pellets direct reduction process in rotary hearth furnace, a mathematical model coupling heterogeneous chemical reaction kinetics, heat and mass transfer of this process was established. The effects of furnace temperature (from 1273.15 K to 1673.15 K) and pellet radius (from 6 mm to 16 mm) on the direct reduction of carbon-containing composite pellets were studied by adopting computational fluid dynamics software. The pellet temperature and composition changes under different operating conditions were analyzed. CO and CO2 fluxes, heat fluxes on the pellet surface were especially studied. Total heat absorption by the pellet, CO and CO2 overflow from the pellet surface together with pellet degree of metallization (DOM) and zinc removal rate (ZRR) were calculated. Results show that with the increasing of furnace temperature or the decreasing of the pellet radius, the temperature difference between pellet surface and its center and the final DOM, ZRR increased. The larger the pellet radius, the smaller the heat absorption, also the smaller CO and CO2 overflow. But heat absorption and CO overflow per unit volume are higher. There is an optimal pellet radius with high CO utilization efficiency. Pellet porosity decreases at first and then increases with reducing time. It is also found that effective thermal conductivity is a major factor limiting the pellets temperature increasing. The reduction sequence of the pellets is Fe2O3→Fe3O4→FeO→Fe.

Publisher

EDP Sciences

Subject

Materials Chemistry,Metals and Alloys,Mechanics of Materials,Computational Mechanics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of quaternary basicity on reduction behavior of iron-bearing dust pellets;Journal of Iron and Steel Research International;2023-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3