Characterization of Microstructure in High-Hardness Surface Layer of Low-Carbon Steel

Author:

Xiao HaitaoORCID,Zheng Shaobo,Xin Yan,Xu Jiali,Han Ke,Li Huigai,Zhai Qijie

Abstract

Surface hardening improves the strength of low-carbon steel without interfering with the toughness of its core. In this study, we focused on the microstructure in the surface layer (0–200 μm) of our low-carbon steel, where we discovered an unexpectedly high level of hardness. We confirmed the presence of not only upper bainite and acicular ferrite but also lath martensite in the hard surface layer. In area of 0–50 μm, a mixed microstructure of lath martensite and B1 upper bainite was formed as a result of high cooling rate (about 50–100 K/s). In area of 50–200 μm, a mixed microstructure of acicular ferrite and B2 upper bainite was formed. The average nanohardness of the martensite was as high as 9.87 ± 0.51 GPa, which was equivalent to the level reported for steel with twenty times the carbon content. The ultrafine laths with an average width of 128 nm was considered to be a key cause of high nanohardness. The average nanohardness of the ferrites was much lower than for martensite: 4.18 ± 0.39 GPa for upper bainite and 2.93 ± 0.30 GPa for acicular ferrite. Yield strength, likewise, was much higher for martensite (2378 ± 123 MPa) than for upper bainite (1007 ± 94 MPa) or acicular ferrite (706 ± 72 MPa). The high yield strength value of martensite gave the surface layer an exceptional resistance to abrasion to a degree that would be unachievable without additional heat treatment in other steels with similar carbon content.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3