Nucleation and growth of discontinuous precipitates in Cu–Ag alloys

Author:

An BailingORCID,Xin Yan,Niu Rongmei,Xiang Zhaolong,Wang Engang,Han Ke

Abstract

Abstract To study discontinuous precipitation, which is an important method for strengthening materials, we observed the nucleation and growth of discontinuous precipitates in Cu–Ag alloys using electron backscatter diffraction and scanning transmission electron microscopy. We found that discontinuous precipitation always started with Ag precipitates, which nucleated on Cu grain boundaries. These precipitates then each took the shape of a large, abutted cone that shared a semi-coherent interface with one of the Cu grains, topped by a small spherical cap that shared an incoherent interface with the Cu grain on the opposite side of the boundary. This formation created a difference between the levels of interface energy on each side of boundary. We assume that this difference and boundary curvature together generates the driving force necessary to push grain boundary migration, thus triggering discontinuous precipitation. Because of grain boundary migration, Ag solute was consumed at one side of the grain, which causes a solute difference. The difference produces mainly driving force, pushing the boundaries to migrate forward.

Funder

State of Florida, USA

NSF

National Science Foundation

National High Magnetic Field Laboratory (NHMFL), USA

China Scholarship Council

111 Project

Key R&D Program of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3