Predictive Analysis and Correction Control of CCT for a Power System Based on a Broad Learning System

Author:

Yang Yude1ORCID,Fang Huayi1,Yang Lizhen2

Affiliation:

1. Guangxi Key Laboratory of Power System Optimization and Energy-Saving Technology, School of Electrical Engineering, Guangxi University, Nanning 530004, China

2. School of Economics and Management, Guangxi Vocational University of Agriculture, Nanning 530004, China

Abstract

Transient stability is an important factor for the stability of a power system. With improvements in voltage levels, and the expansion of power network scales, the problem of transient stability is particularly prominent. When a power system circuit fails, if the operation time of the relay protection device is higher than the critical clearing time (CCT), the relay protection device cannot cut the fault line in a timely manner. It is essential to forecast and adjust the CCT to improve the stability of the system; therefore, a method is proposed in this paper to predict and evaluate the critical clearing time using the broad learning system (BLS). The sensitivity of the critical clearing time can be easily calculated based on the prediction results of the critical clearing time using BLS. Moreover, the critical clearing time can be modified using the BLS correction control model. The proposed method was verified using a 4-machine 11-node system and a 10-machine 39-node system. According to the experimental results, the proposed model can predict, evaluate, and correct the CCT very well.

Funder

Guangxi Special Fund for Innovation-Driven Development

Guangxi Key Laboratory of Power System Optimization and Energy Technology Research

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3