Exploring the Visual Attention Mechanism of Long-Distance Driving in an Underground Construction Cavern: Eye-Tracking and Simulated Driving

Author:

Zeng Qin123ORCID,Chen Yun13ORCID,Zheng Xiazhong13,Zhang Meng3,Li Donghui4,Hu Qilin5

Affiliation:

1. Hubei Key Laboratory of Construction and Management in Hydropower Engineering, China Three Gorges University, Yichang 443002, China

2. College of Economics & Management, China Three Gorges University, Yichang 443002, China

3. College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China

4. Building Decoration Supervision Station, Yichang Municipal Housing and Urban-Rural Development Bureau, Yichang 443000, China

5. Sinohydro Bureau 5 Co., Ltd., Power Construction Corporation of China, Chengdu 610066, China

Abstract

Prolonged driving is necessary in underground construction caverns to transport materials, muck, and personnel, exposing drivers to high-risk and complex environments. Despite previous studies on attention and gaze prediction at tunnel exit-inlet areas, a significant gap remains due to the neglect of dual influences of long-distance driving and complex cues. To address this gap, this study establishes an experimental scenario in a construction environment, utilizing eye-tracking and simulated driving to collect drivers’ eye movement data. An analysis method is proposed to explore the visual change trend by examining the evolution of attention and calculating the possibility of visual cues being perceived at different driving stages to identify the attentional selection mechanism. The findings reveal that as driving time increases, fixation time decreases, saccade amplitude increases, and some fixations transform into unconscious saccades. Moreover, a phenomenon of “visual adaptation” occurs over time, reducing visual sensitivity to environmental information. At the start of driving, colorful stimuli and safety-related information compete for visual resources, while safety-related signs, particularly warning signs, always attract drivers’ attention. However, signs around intense light are often ignored. This study provides a scientific basis for transport safety in the construction environment of underground caverns.

Funder

National Natural Science Foundation of China

Open Foundation of the State Key Laboratory of Hydraulic Engineering Simulation and Safety

Natural Science Research Project of Yichang City

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3