Optimization of Underground Cavern Sign Group Layout Using Eye-Tracking Technology

Author:

Zeng Qin123ORCID,Chen Yun13ORCID,Zheng Xiazhong13,He Shiyu3,Li Donghui4,Nie Benwu5

Affiliation:

1. Hubei Key Laboratory of Construction and Management in Hydropower Engineering, China Three Gorges University, Yichang 443002, China

2. College of Economics & Management, China Three Gorges University, Yichang 443002, China

3. College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China

4. Building Decoration Supervision Station, Yichang Municipal Housing and Urban-Rural Development Bureau, Yichang 443000, China

5. CHN ENERGY Jinshajiang Branch Co., Ltd., Kunming 650000, China

Abstract

Efficient sign layouts play a crucial role in guiding driving in underground construction caverns and enhancing transportation safety. Previous studies have primarily focused on evaluating drivers’ gaze behavior in tunnels to optimize individual traffic sign layouts. However, the lack of a theoretical framework for visual perception of visual capture and information conveyed by sign groups hinders the measurement of drivers’ comprehensive visual perception and the layout optimization of sign groups. To address this gap, this study introduces a calculation method for sign group information volume and a visual cognition model, establishing a comprehensive evaluation approach for sign group visual cognition. Eye movement data, collected using eye-tracking technology, were utilized to evaluate the comprehensive visual perception and optimize the layout of sign groups. The findings indicate that a low information volume fails to enhance recognition ability and alleviate the psychological burden. Conversely, excessive information may result in overlooking signs positioned on the left and top. Furthermore, drivers are unable to improve cognitive efficiency and driving safety even with self-regulation when faced with an information volume exceeding 120 bits within a 100 m span. Overall, this study demonstrates the effectiveness of the proposed method in promoting the long-term safety effect of temporary signage layouts in underground construction areas.

Funder

National Natural Science Foundation of China

Open Foundation of the State Key Laboratory of Hydraulic Engineering Simulation and Safety

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3