Optimal Comfortable Load Schedule for Home Energy Management Including Photovoltaic and Battery Systems

Author:

Qais Mohammed1ORCID,Loo K. H.2ORCID,Hasanien Hany M.34ORCID,Alghuwainem Saad5ORCID

Affiliation:

1. Centre for Advances in Reliability and Safety, Hong Kong, China

2. Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hong Kong, China

3. Electrical Power and Machines Department, Faculty of Engineering, Ain Shams University, Cairo 11517, Egypt

4. Faculty of Engineering and Technology, Future University in Egypt, Cairo 11835, Egypt

5. Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

Abstract

Although the main concern of consumers is to reduce the cost of energy consumption, zero-energy buildings are the main concern of governments, which reduce the carbon footprint of the residential sector. Therefore, homeowners are motivated to install distributed renewable energy resources such as solar energy, which includes photovoltaics (PVs), solar concentrators, and energy storage systems (ESSs); these installations are intended to maintain the homeowners’ energy consumption, and the excess energy can be sold to the grid. In light of the comfort consumption suggestions made by users, this paper presents an optimal home energy management (HEM) for zero-energy buildings and low energy consumption. Firstly, this paper proposes a new optimization algorithm called random integer search optimization (RISO). Afterwards, we propose a new objective function to enable zero energy consumption from the grid and lower costs. Therefore, in this study, the primary energy resources for homes are PVs and ESSs, while the grid is on standby during the intermittency of the primary resources. Then, the HEM applies the RISO algorithm for an optimal day-ahead load schedule based on the day-ahead weather forecast and consumers’ comfort time range schedule. The proposed HEM is investigated using a schedule of habits for residential customers living in Hong Kong, where the government subsidizes the excess clean energy from homes to the grid. Three scenarios were studied and compared in this work to verify the effectiveness of the proposed HEM. The results revealed that the load schedule within the comfort times decreased the cost of energy consumption by 25% of the cost without affecting the users’ comfort.

Funder

King Saud University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3