Abstract
To enhance the operational reliability and safety of electric vehicles (EVs), big data platforms for EV supervision are rapidly developing, which makes a large quantity of battery data available for fault diagnosis. Since fault types related to lithium-ion batteries play a dominant role, a comprehensive fault diagnosis method is proposed in this paper, in pursuit of an accurate early fault diagnosis method based on voltage signals from battery cells. The proposed method for battery fault diagnosis mainly includes three parts: variational mode decomposition in the signal analysis part to separate the inconsistency of cell states, critical representative signal feature extraction by using a generalized dimensionless indicator construction formula and effective anomaly detection by sparsity-based clustering. The signal features of the majority of signal-based battery fault detection studies are found to be particular cases with a specific set of parameter values of the proposed indicator construction formula. With the sensitivity and stability balanced by appropriate moving-window size selection, the proposed signal-based method is validated to be capable of earlier anomaly detection, false-alarm reduction, and anomalous performance identification, compared with traditional approaches, based on actual pre-fault operating data from three different situations.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献