Unsupervised Anomaly Detection for Power Batteries: A Temporal Convolution Autoencoder Framework

Author:

Wang Juan11,Ye Yonggang11,Wu Minghu11,Zhang Fan11,Cao Ye11,Zhang Zetao11,Chen Ming11,Tang Jing11

Affiliation:

1. Hubei University of Technology Hubei Laboratory of Solar Energy Efficient Utilization and Energy Storage Operation Control, , Wuhan 430068 , China

Abstract

Abstract To prevent potential abnormalities from escalating into critical faults, a rapid and precise algorithm should be employed for detecting power battery anomalies. An unsupervised model based on a temporal convolutional autoencoder was proposed. It can quickly and accurately identify abnormal power battery data. Its encoder utilized a temporal convolutional network (TCN) structure with residuals to parallelly process data while capturing time dependencies. A novel TCN structure with an effect–cause relationship was developed for the decoder. The same-timescale connection was established between the encoder and decoder to improve the model performance. The validity of the proposed model was confirmed using a real-world car dataset. Compared with the GRU-AE model, the proposed approach reduced the parameter count and mean square error by 19.5% and 71.9%, respectively. This study provides insights into the intelligent battery pack abnormality detection technology.

Funder

Hubei University of Technology

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3