Numerical Simulation of the Unsteady Airwake of the Liaoning Carrier Based on the DDES Model Coupled with Overset Grid

Author:

Yang Xiaoxi123,Li Baokuan123,Ren Zhibo4,Tian Fangchao4

Affiliation:

1. School of Metallurgy, Northeastern University, Shenyang 110819, China

2. National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China

3. Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110819, China

4. AECC Shenyang Engine Research Institute, Shenyang 110819, China

Abstract

The wake behind an aircraft carrier under heavy wind condition is a key concern in ship design. The Chinese Liaoning ship’s upturned bow and the island on the deck could cause serious flow separation in the landing and take-off area. The flow separation induces strong velocity gradients and intense pulsations in the flow field. In addition, the sway of the aircraft carrier caused by waves could also intensify the flow separation. The complex flow field poses a significant risk to the shipboard aircraft take-off and landing operation. Therefore, accurately predicting the wake of an aircraft carrier during wave action motion is of great interest for design optimization and recovery aircraft control. In this research, the aerodynamic around an aircraft carrier (i.e., Liaoning) was analyzed using the computational fluid dynamics technique. The validity of two turbulence models was verified through comparison with the existing data from the literature. The upturned bow take-off deck and the right-hand island were the main areas where flow separation occurred. Delayed detached eddy simulation (DDES), which combines the advantages of LES and RANS, was adopted to capture the full-scale spatial and temporal flow information. The DDES was also coupled with the overset grid to calculate the flow field characteristics under the effect of hull sway. The downwash area at 15° starboard wind became shorter when the hull was stationary, while the upwash area and turbulence intensity increased. The respective characteristics of the wake flow field in the stationary and swaying state of the ship were investigated, and the flow separation showed a clear periodic when the ship was swaying. Comprehensive analysis of the time-dependent flow characteristic of the approach line for fixed-wing naval aircraft is also presented.

Funder

This work was financially supported by the the 111 Project.

Publisher

MDPI AG

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3