Evaluating ship superstructure aerodynamics for maritime helicopter operations through CFD and flight simulation

Author:

Forrest J.S.,Kaaria C.H.,Owen I.

Abstract

ABSTRACTThe unsteady air flow over and around the helicopter landing deck of a naval vessel is known to cause high pilot workload and to limit the helicopter's operational envelope for launch and recovery. Previous research has suggested that modifications to the ship's hangar edges can beneficially modify the flow over the deck. This paper examines the effectiveness of five hangar-edge modifications using computational fluid dynamics–generated airwakes and flight mechanics modelling, as well as piloted flight trials in a motion-base simulator. Results are presented, in terms of unsteady helicopter loads and pilot workload ratings, for modifications to the windward vertical rear edge of the hangar and with an oblique wind. The results demonstrate that while the airwake can be altered by superstructure modifications, the integrated effect of the altered airwake on the entire helicopter does not necessarily give the desired result; indeed of the five modifications tested, two were seen to be beneficial while three caused an increase in pilot workload compared with the unmodified hangar. Overall, the paper shows that the airwake can be modified by superstructure design changes, and that the effect on the helicopter can be measured through modelling and simulation. It is also demonstrated that making judgements on the severity of the airwake based on the aerodynamic flow field alone can be misleading. The benefit of these simulation tools is that they can be used during the ship design process to evaluate the effect of the superstructure aerodynamics, rather than wait until after the ship is built.

Publisher

Cambridge University Press (CUP)

Subject

Aerospace Engineering

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3