Abstract
Establishing accurate and large-scale genotype–phenotype correlations and predictions of individual response to pharmacological treatments are two of the holy grails of Personalized Medicine. These tasks are challenging and require an integrated knowledge of the complex processes that regulate gene expression and, ultimately, protein functionality in vivo, the effects of mutations/polymorphisms and the different sources of interindividual phenotypic variability. A remarkable example of our advances in these challenging tasks is the highly polymorphic CYP2D6 gene, which encodes a cytochrome P450 enzyme involved in the metabolization of many of the most marketed drugs (including SARS-Cov-2 therapies such as hydroxychloroquine). Since the introduction of simple activity scores (AS) over 10 years ago, its ability to establish genotype–phenotype correlations on the drug metabolizing capacity of this enzyme in human population has provided lessons that will help to improve this type of score for this, and likely many other human genes and proteins. Multidisciplinary research emerges as the best approach to incorporate additional concepts to refine and improve such functional/activity scores for the CYP2D6 gene, as well as for many other human genes associated with simple and complex genetic diseases.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献