Monitoring Corn Nitrogen Concentration from Radar (C-SAR), Optical, and Sensor Satellite Data Fusion

Author:

Lapaz Olveira Adrián123ORCID,Saínz Rozas Hernán234,Castro-Franco Mauricio5ORCID,Carciochi Walter13ORCID,Nieto Luciana6ORCID,Balzarini Mónica378,Ciampitti Ignacio6ORCID,Reussi Calvo Nahuel13ORCID

Affiliation:

1. Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Route 226 km 73.5, Balcarce B 7620, Buenos Aires, Argentina

2. Agencia Nacional de Promoción Científica y Tecnológica, Ciudad Autónoma de Buenos Aires C1425FQD, Buenos Aires, Argentina

3. Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires C1425FQD, Buenos Aires, Argentina

4. Instituto Nacional de Tecnología Agropecuaria, Route 226 km 73.5, Balcarce B 7620, Buenos Aires, Argentina

5. Precision Agriculture Research Group, FCAyRN, Universidad de los Llanos, Vía Puerto López km 12, Villavicencio 500003, Meta, Colombia

6. Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA

7. Cátedra de Estadística y Biometría, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba, Ing. Agr. Félix Marrone 746 C.C. 509, Cordoba 5000, Argentina

8. Unidad de Fitopatología Y Modelización Agrícola, Road 60 Cuadras km 5.5, Cordoba X5020ICA, Argentina

Abstract

Corn (Zea mays L.) nitrogen (N) management requires monitoring plant N concentration (Nc) with remote sensing tools to improve N use, increasing both profitability and sustainability. This work aims to predict the corn Nc during the growing cycle from Sentinel-2 and Sentinel-1 (C-SAR) sensor data fusion. Eleven experiments using five fertilizer N rates (0, 60, 120, 180, and 240 kg N ha−1) were conducted in the Pampas region of Argentina. Plant samples were collected at four stages of vegetative and reproductive periods. Vegetation indices were calculated with new combinations of spectral bands, C-SAR backscatters, and sensor data fusion derived from Sentinel-1 and Sentinel-2. Predictive models of Nc with the best fit (R2 = 0.91) were calibrated with spectral band combinations and sensor data fusion in six experiments. During validation of the models in five experiments, sensor data fusion predicted corn Nc with lower error (MAPE: 14%, RMSE: 0.31 %Nc) than spectral band combination (MAPE: 20%, RMSE: 0.44 %Nc). The red-edge (704, 740, 740 nm), short-wave infrared (1375 nm) bands, and VV backscatter were all necessary to monitor corn Nc. Thus, satellite remote sensing via sensor data fusion is a critical data source for predicting changes in plant N status.

Funder

FonCyT

INTA

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference83 articles.

1. Cover Crop Species Can Increase or Decrease the Fertilizer-nitrogen Requirement in Maize;Carciochi;Agron. J.,2021

2. Anaerobically Incubated Nitrogen Improved Nitrogen Diagnosis in Corn;Orcellet;Agron. J.,2017

3. Predicting Field-Apparent Nitrogen Mineralization from Anaerobically Incubated Nitrogen;Wyngaard;Soil Sci. Soc. Am. J.,2018

4. Rationale for Optimum Nitrogen Fertilization in Corn Production;Stanford;Environ. Qual.,1973

5. Yield Response to Nitrogen Management in a Corn-Soybean Sequence in North Central Kansas—2021 Season;Correndo;Kansas Agric. Exp. Stn. Res. Rep.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3