Vegetation and Dormancy States Identification in Coniferous Plants Based on Hyperspectral Imaging Data

Author:

Dmitriev Pavel A.1ORCID,Kozlovsky Boris L.1,Dmitrieva Anastasiya A.1ORCID

Affiliation:

1. Botanical Garden, Academy of Biology and Biotechnologies, Southern Federal University, Rostov-on-Don 344006, Russia

Abstract

Conifers are a common type of plant used in ornamental horticulture. The prompt diagnosis of the phenological state of coniferous plants using remote sensing is crucial for forecasting the consequences of extreme weather events. This is the first study to identify the “Vegetation” and “Dormancy” states in coniferous plants by analyzing their annual time series of spectral characteristics. The study analyzed Platycladus orientalis, Thuja occidentalis and T. plicata using time series values of 81 vegetation indices and 125 spectral bands. Linear discriminant analysis (LDA) was used to identify “Vegetation” and “Dormancy” states. The model contained three to four independent variables and achieved a high level of correctness (92.3 to 96.1%) and test accuracy (92.1 to 96.0%). The LDA model assigns the highest weight to vegetation indices that are sensitive to photosynthetic pigments, such as the photochemical reflectance index (PRI), normalized PRI (PRI_norm), the ratio of PRI to coloration index 2 (PRI/CI2), and derivative index 2 (D2). The random forest method also diagnoses the “Vegetation” and “Dormancy” states with high accuracy (97.3%). The vegetation indices chlorophyll/carotenoid index (CCI), PRI, PRI_norm and PRI/CI2 contribute the most to the mean decrease accuracy and mean decrease Gini. Diagnosing the phenological state of conifers throughout the annual cycle will allow for the effective planning of management measures in conifer plantations.

Funder

Russian Science Foundation

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3