Prediction of Significant Wave Heights with Engineered Features from GNSS Reflectometry

Author:

Becker Jan M.1,Roggenbuck Ole1ORCID

Affiliation:

1. Department of Geodesy, Federal Agency for Cartography and Geodesy, Richard-Strauss-Allee 11, 60598 Frankfurt am Main, Germany

Abstract

Estimating reflector heights at stationary GNSS sites with interferometric reflectometry (IR) is a well-established technique in ocean remote sensing. Additionally, IR offers the possibility to estimate the significant wave height (SWH) with a linear model using the damping coefficient from an inverse modelling applied to GNSS signal-to-noise ratio (SNR) observations. Such a linear model serves as a benchmark in the present study, where an alternative approach for the estimation of both SWH and reflector height is presented that is based on kernel regression and clustering techniques. In this alternative approach, the reflector height is estimated by analyzing local extrema occurring in the interference pattern that is present in GNSS SNR observations. Various predictors are derived from clustering statistics and the estimated reflector heights. These predictors are used for the SWH determination with supervised machine learning. Linear models, bagged regression trees, and artificial neural networks are applied and respective results are compared for various predictor sets. In a second step, damping coefficients obtained from the inverse modelling mentioned above are additionally taken into account as predictors. The usability of the alternative approach is demonstrated. Compared to the benchmark, a significant improvement in terms of accuracy is found for an artificial neural network with predictors from both the alternative and the inverse modelling approach.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3