Time-Dependent Systematic Biases in Inferring Ice Cloud Properties from Geostationary Satellite Observations

Author:

Li Dongchen1,Saito Masanori1ORCID,Yang Ping123

Affiliation:

1. Department of Atmospheric Sciences, Texas A&M University, College Station, TX 77843, USA

2. Department of Oceanography, Texas A&M University, College Station, TX 77843, USA

3. Department of Physics & Astronomy, Texas A&M University, College Station, TX 77843, USA

Abstract

Geostationary satellite-based remote sensing is a powerful tool to observe and understand the spatiotemporal variation of cloud optical-microphysical properties and their climatologies. Solar reflectances measured from the Advanced Baseline Imager (ABI) instruments aboard Geostationary Operational Environmental Satellites 16 and 17 correspond to different spatial pixel resolutions, from 0.5 km in a visible band, up to 2 km in infrared bands. For multi-band retrievals of cloud properties, reflectances with finer spatial resolution need to be resampled (averaged or sub-sampled) to match the coarsest resolution. Averaging all small pixels within a larger pixel footprint is more accurate but computationally demanding when the data volume is large. Thus, NOAA operational cloud products incorporate sub-sampling (selecting one high-resolution pixel) to resample the reflectance data, which could cause potential retrieval biases. In this study, we examine various error sources of retrieval biases of cloud optical thickness (COT) and cloud effective radius (CER) caused by sub-sampling, including the solar zenith angle, viewing zenith angle, pixel resolutions, and cloud types. CER retrievals from ice clouds based on sub-sampling have larger biases and uncertainties than COT retrievals. The relative error compared to pixel averaging is positive for clouds that have small COT or CER, and negative for clouds that have large COT or CER. The relative error of COT decreases as the pixel resolution becomes coarser. The COT retrieval biases are attributed mainly to cirrus and cirrostratus clouds, while the largest biases of CER retrievals are associated with cirrus clouds.

Funder

Texas A&M University

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3