Effect of Hydration Temperature Rise Inhibitor on the Temperature Rise of Concrete and Its Mechanism

Author:

Liang Tian1,Luo Penghui12,Mao Zhongyang12,Huang Xiaojun12,Deng Min12,Tang Mingshu12

Affiliation:

1. College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211800, China

2. State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing 211800, China

Abstract

The rapid drop in internal temperature of mass concrete can readily lead to temperature cracks. Hydration heat inhibitors reduce the risk of concrete cracking by reducing the temperature during the hydration heating phase of cement-based material but may reduce the early strength of the cement-based material. Therefore, in this paper, the influence of commercially available hydration temperature rise inhibitors on concrete temperature rise is studied from the aspects of macroscopic performance and microstructure characteristics, and their mechanism of action is analyzed. A fixed mix ratio of 64% cement, 20% fly ash, 8% mineral powder and 8% magnesium oxide was used. The variable was different admixtures of hydration temperature rise inhibitors at 0%, 0.5%, 1.0% and 1.5% of the total cement-based materials. The results showed that the hydration temperature rise inhibitors significantly reduced the early compressive strength of concrete at 3 d, and the greater the amount of hydration temperature rise inhibitors, the more obvious the decrease in concrete strength. With the increase in age, the influence of hydration temperature rise inhibitor on the compressive strength of concrete gradually decreased, and the decrease in compressive strength at 7 d was less than that at 3 d. At 28 d, the compressive strength of the hydration temperature rise inhibitor was about 90% in the blank group. XRD and TG confirmed that hydration temperature rise inhibitors delay early hydration of cement. SEM showed that hydration temperature rise inhibitors delayed the hydration of Mg(OH)2.

Funder

Open Fund project of National Laboratory for High Performance Civil Engineering Materials

the Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3