Experimental Study on Early-Age Crack of Mass Concrete under the Controlled Temperature History

Author:

Shi Nannan1ORCID,Ouyang Jianshu1,Zhang Runxiao2ORCID,Huang Dahai1

Affiliation:

1. Department of Civil Engineering, Beihang University, Beijing 100191, China

2. Department of Civil Engineering, University of Toronto, Toronto, ON, Canada M5S 2E8

Abstract

Thermal deformation under restrained conditions often leads to early-age cracking and durability problems in mass concrete structures. It is crucial to monitor accurately the evolution of temperature and thermal stresses. In this paper, experimental studies using temperature stress testing machine (TSTM) are carried out to monitor the generated thermal cracking in mass concrete. Firstly, components and working principle of TSTM were introduced. Cracking temperatures and stress reserves are selected as the main cracking evaluation indicators of TSTM. Furthermore, effects of temperature controlling measures on concrete cracking were quantitatively studied, which consider the concrete placing temperature (before cooling) and cooling rates (after cooling). Moreover, the influence of reinforcement on early-age cracking has been quantitatively analyzed using the TSTM. The experimental results indicate that the crack probability of reinforced concrete (RC) is overestimated. Theoretical calculations proved that the internal stress can transfer from concrete to reinforcement due to creep effect. Finally, the experimental results indicate that the reinforcement can improve the crack resistance of concrete by nearly 30% in the TSTM tests, and the ultimate tensile strain of RC is approximately 105% higher than that of plain concrete with the same mix proportions.

Funder

China Three Gorges Corporation

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3