Effect of Heat Treatment on Microstructure and Mechanical Behavior of Ultrafine-Grained Ti-2Fe-0.1B

Author:

Mi Yaoyao1,Wang Yanhuai2,Wang Yu1,Dong Yuecheng1ORCID,Chang Hui1,Alexandrov I. V.3

Affiliation:

1. College of Materials Science and Engineering/Tech Institute for Advanced Materials, Nanjing Tech University, Nanjing 211816, China

2. Casting and Forging Branch, Lanzhou LS Group Co., Ltd., Lanzhou 730314, China

3. Department of Materials Science and Physics of Metals, Ufa University of Science and Technology, Ufa 450076, Russia

Abstract

In the present study, a novel Ti-2Fe-0.1B alloy was processed using equal channel angular pressing (ECAP) via route Bc for four passes. The isochronal annealing of the ultrafine-grained (UFG) Ti-2Fe-0.1B alloy was conducted at various temperatures between 150 and 750 °C with holding times of 60 min. The isothermal annealing was performed at 350–750 °C with different holding times (15 min–150 min). The results indicated that no obvious changes in the microhardness of the UFG Ti-2Fe-0.1B alloy are observed when the annealing temperature (AT) is up to 450 °C. Compared to the UFG state, it was found that excellent strength (~768 MPa) and ductility (~16%) matching can be achieved for the UFG Ti-2Fe-0.1B alloy when annealed at 450 °C. The microstructure of the UFG Ti-2Fe-0.1B alloy before and after the various annealing treatments was characterized using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). It was found that the average grain size remained at an ultrafine level (0.91–1.03 μm) when the annealing temperature was below 450 °C. The good thermal stability of the UFG Ti-2Fe-0.1B alloy could be ascribed to the pinning of the TiB needles and the segregation of the Fe solute atoms at the grain boundaries, which is of benefit for decreasing grain boundary energy and inhibiting the mobility of grain boundaries. For the UFG Ti-2Fe-0.1B alloy, a recrystallization activation energy with an average value of ~259.44 KJ/mol was analyzed using a differential scanning calorimeter (DSC). This is much higher than the lattice self-diffusion activation energy of pure titanium.

Funder

Russian Science Foundation under project

National Natural Science Foundation of China

National Key Research and Development Program of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3