Low-Cycle Fatigue Behavior and Fracture Characteristics of Low-Cost Ti-2Fe-0.1B Alloy

Author:

Wang Chu12,Sun Yangyang1,Mi Yaoyao1,Dong Yuecheng12ORCID,Chang Hui1,Alexandrov I. V.2

Affiliation:

1. College of Materials Science and Engineering, Tech Institute for Advanced Materials, Nanjing Tech University, Nanjing 211816, China

2. Department of Materials Science and Physics of Metals, Ufa University of Science and Technology, Ufa 450008, Russia

Abstract

In recent decades, the effect of Fe element addition on titanium alloy has been investigated extensively due to the development of low-cost titanium alloys, as well as B microalloying, which could decrease the grain size of titanium alloys during the casting process. As a key structural material, the study of the fatigue behavior of titanium alloys is crucial and always attractive for scientists. Hence, in this paper, the low cycle fatigue (LCF) behavior and fracture characteristics of a low-cost Ti-2Fe-0.1B alloy with a lamellar structure were investigated systematically, five different strain amplitudes (Δεt/2) in the range from 0.6% to 1.4% were selected to control the LCF process. It was found that the Ti-2Fe-0.1B alloy exhibits continuous cyclic softening behavior in the cycle as a whole at Δεt/2 ≤ 1.2%, while at Δεt/2 = 1.4%, it exhibits slight cyclic hardening at the initial stage of the cycle, then shows cyclic softening. Compared with pure titanium and other typical titanium alloys, the Ti-2Fe-0.1B alloy indicated maximum fatigue life under the same strain amplitude, it can be attributed to the fine grain size result from the effect of Fe element and trace B, which could hinder the dislocation movement and crack propagation.

Funder

Russian Science Foundation under project

National Natural Science Foundation of China

the National Key Research and Development Program of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3