Affiliation:
1. College of Materials Science and Engineering, Tech Institute for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
2. Department of Materials Science and Physics of Metals, Ufa University of Science and Technology, Ufa 450008, Russia
Abstract
In recent decades, the effect of Fe element addition on titanium alloy has been investigated extensively due to the development of low-cost titanium alloys, as well as B microalloying, which could decrease the grain size of titanium alloys during the casting process. As a key structural material, the study of the fatigue behavior of titanium alloys is crucial and always attractive for scientists. Hence, in this paper, the low cycle fatigue (LCF) behavior and fracture characteristics of a low-cost Ti-2Fe-0.1B alloy with a lamellar structure were investigated systematically, five different strain amplitudes (Δεt/2) in the range from 0.6% to 1.4% were selected to control the LCF process. It was found that the Ti-2Fe-0.1B alloy exhibits continuous cyclic softening behavior in the cycle as a whole at Δεt/2 ≤ 1.2%, while at Δεt/2 = 1.4%, it exhibits slight cyclic hardening at the initial stage of the cycle, then shows cyclic softening. Compared with pure titanium and other typical titanium alloys, the Ti-2Fe-0.1B alloy indicated maximum fatigue life under the same strain amplitude, it can be attributed to the fine grain size result from the effect of Fe element and trace B, which could hinder the dislocation movement and crack propagation.
Funder
Russian Science Foundation under project
National Natural Science Foundation of China
the National Key Research and Development Program of China
Priority Academic Program Development of Jiangsu Higher Education Institutions
Subject
General Materials Science,Metals and Alloys
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献