Towards Model-Free Tool Dynamic Identification and Calibration Using Multi-Layer Neural Network

Author:

Su HangORCID,Qi Wen,Hu Yingbai,Sandoval JuanORCID,Zhang Longbin,Schmirander Yunus,Chen Guang,Aliverti AndreaORCID,Knoll Alois,Ferrigno Giancarlo,De Momi Elena

Abstract

In robot control with physical interaction, like robot-assisted surgery and bilateral teleoperation, the availability of reliable interaction force information has proved to be capable of increasing the control precision and of dealing with the surrounding complex environments. Usually, force sensors are mounted between the end effector of the robot manipulator and the tool for measuring the interaction forces on the tooltip. In this case, the force acquired from the force sensor includes not only the interaction force but also the gravity force of the tool. Hence the tool dynamic identification is required for accurate dynamic simulation and model-based control. Although model-based techniques have already been widely used in traditional robotic arms control, their accuracy is limited due to the lack of specific dynamic models. This work proposes a model-free technique for dynamic identification using multi-layer neural networks (MNN). It utilizes two types of MNN architectures based on both feed-forward networks (FF-MNN) and cascade-forward networks (CF-MNN) to model the tool dynamics. Compared with the model-based technique, i.e., curve fitting (CF), the accuracy of the tool identification is improved. After the identification and calibration, a further demonstration of bilateral teleoperation is presented using a serial robot (LWR4+, KUKA, Germany) and a haptic manipulator (SIGMA 7, Force Dimension, Switzerland). Results demonstrate the promising performance of the model-free tool identification technique using MNN, improving the results provided by model-based methods.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3