Design of motor cable artificial muscle (MC-AM) with tendon sheath–pulley system (TSPS) for musculoskeletal robot

Author:

Yuan JianboORCID,Fan YeruiORCID,Wu Yaxiong

Abstract

AbstractIn an unstructured environment, the arm can perform complicated tasks with rapidity, flexibility, and robustness. It is difficult to configure multiple artificial muscles similar to an arm in the compact space of a robotic arm. When muscle tension is transferred, mechanisms like tendon-sheath/tendon-pulley may be installed in a compact space to develop musculoskeletal robots that are closer to the arm. However, handling variable frictional nonlinearity and elastic cable deformation is necessary for transmission stability. In this study, the modular artificial muscle system (MAMS), including motor cable artificial muscle and tendon sheath–pulley system (TSPS), that can be installed remotely and transmit muscle tension in narrow paths, is designed. The feed-forward multi-layer neural network (FF-MNN) approach is utilized to discuss the relationship between the measurable input tension of TSPS and the unmeasurable output tension and cable elongation. Subsequently, the lightweight musculoskeletal arm (LM-Arm) is built to verify the validity of MAMS. Through trials, the experiments of MAMS after friction compensating and the LM-Arm’s end-point 3D trajectory tracking are investigated. The results show that average errors of the active and passive muscles tension are 3.87 N and 3.51 N, respectively, under conditions of larger load and higher contraction velocity. The average muscle length error of trajectory tracking is 0.00078 m (0.72%). The suggested MAMS may successfully build a musculoskeletal robot that has similar flexibility and morphology to the arm. It can also be utilized to power various pieces of machinery, such as rescue robot, invasive surgical robots, dexterous hands, and wearable exoskeletons.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3