Design and Hardware-in-the-Loop Implementation of Fuzzy-Based Proportional-Integral Control for the Traction Line-Side Converter of a High-Speed Train

Author:

Yan Qixiang,Tasiu Ibrahim AdamuORCID,Chen Hong,Zhang Yuting,Wu Siqi,Liu Zhigang

Abstract

Power quality is one of many issues affecting the traction power supply system. Prominent among the causes of poor power quality is voltage low-frequency oscillation (VLFO). In this paper, a fuzzy-based PI (FPI) controller to optimize the performance of the traction line-side converter (TLSC) and suppress the effect of VLFO is proposed. Firstly, the mathematical model of China’s railway high-speed five single-phase TLSC is developed, and then the FPI control unit is designed based on specific requirements. The fuzzy antecedent and consequence rules were generated based on the expert and previous knowledge of TLSC operation. An offline simulation of the proposed control scheme under different loads and parameters is conducted to verify the designed. To validate the model, the traction power supply system (TPS) is built on the field-programmable gate array (FPGA) real-time digital simulator (FPGA-RTDS), while the FPI control algorithm is load on modeling tech rapid control prototyping (RCP) real-time digital controller (RTDC). Hardware-in-the-loop (HIL), and offline simulation studies between current decoupling (PI) control, sliding mode control (SMC), and the proposed control method confirms in addition to excellent dynamic performance; the proposed method can successfully suppress the effect of VLFO.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference36 articles.

1. An Approach to Suppress Low-Frequency Oscillation by Combining Extended State Observer With Model Predictive Control of EMUs Rectifier

2. Analysis of four-quadrant operation and speed control of BLDC motor using fuzzy logic controller in SIMULINK;Tasiu;Int. J. Appl. Eng. Res.,2015

3. A Multilevel Inverter for Photovoltaic Systems With Fuzzy Logic Control

4. Development of a fuzzy logic controller for dc/dc converters: Design, computer simulation, and experimental evaluation;So;IEEE Trans. Power Electron.,2006

5. General-purpose fuzzy controller for DC-DC converters

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3