Research on Intelligent Predictive AGC of a Thermal Power Unit Based on Control Performance Standards

Author:

Peng Daogang,Xu Yue,Zhao Huirong

Abstract

In order to satisfy the growing demands of control performance and operation efficiency in the automatic generation control (AGC) system of a grid, a novel, intelligent predictive controller, combined with predictive control and neural network ideas, is proposed and applied to the AGC systems of thermal power units. This paper proposes a Bayesian neural network identification model for typical ultra-supercritical thermal power units, which was found to be accurate and can be used as a simulation model. Based on the model, this paper develops an intelligent predictive control for the AGC of thermal power units, which improves unit load operation and constitutes a novel, closed-loop AGC structure based on online control performance standard (CPS) evaluations. Intelligent predictive control is mainly improved because the neural network rolling optimization model replaces the traditional rolling optimization model in the rolling optimization module. The simulation results indicate that the intelligent predictive controller developed in the two-area interconnected power grid under CPS can, on the one hand, improve the load tracking performance of AGC thermal power units, and, on the other hand, the controller has strong robustness. Whether the system parameters change considerably or the AGC has different grid disturbances, the new type of the loop AGC system can still sufficiently meet the control requirements of the power grid.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3