Digital Twin Concept, Method and Technical Framework for Smart Meters

Author:

Irfan MuhammadORCID,Niaz AshfaqORCID,Habib Muhammad QasimORCID,Shoukat Muhammad UsmanORCID,Atta Shahid HussainORCID,Ali AkbarORCID

Abstract

Smart meters connect smart grid electricity suppliers and users. Smart meters have become a research hotspot as smart grid applications like demand response, power theft prevention, power quality monitoring, peak valley time of use prices, and peer-to-peer (P2P) energy trading have grown. But, as the carriers of these functions, smart meters have technical problems such as limited computing resources, difficulty in upgrading, and high costs, which to some extent restrict the further development of smart grid applications. To address these issues, this study offers a container-based digital twin (CDT) approach for smart meters, which not only increases the user-facing computing resources of smart meters but also simplifies and lowers the overall cost and technical complexity of meter changes. In order to further validate the effectiveness of this method in real-time applications on the smart grid user side, this article tested and analyzed the communication performance of the digital twin system in three areas: remote application services, peer-to-peer transactions, and real-time user request services. The experimental results show that the CDT method proposed in this paper meets the basic requirements of smart grid user-side applications for real-time communication. The container is deployed in the cloud, and the average time required to complete 100 P2P communications using our smart meter structure is less than 2.4 seconds, while the average time required for existing smart meter structures to complete the same number of P2P communications is 208 seconds. Finally, applications, the future development direction of the digital twin method, and technology architecture are projected.

Publisher

AMO Publisher

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3