Synthesis of an Environmentally Friendly Modified Mulberry Branch-Derived Biochar Composite: High Degradation Efficiency of BPA and Mitigation of Toxicity in Silkworm Larvae

Author:

Qu Han12,Chen Lin1,Yang Fujian1,Zhu Jiangwei3,Qi Chengdu4ORCID,Peng Guilong1ORCID

Affiliation:

1. State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China

2. Key Laboratory of Eco-Environment of Three Gorges Region of Ministry of Education, Chongqing University, Chongqing 400045, China

3. Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China

4. School of Environment, Nanjing Normal University, Nanjing 210023, China

Abstract

In the present study, mulberry branch-derived biochar CuO (MBC/CuO) composite was successfully synthesized and used as a catalyst to activate persulfate (PS) for the degradation of bisphenol A (BPA). The MBC/CuO/PS system exhibited a high degradation efficiency (93%) of BPA, under the conditions of 0.1 g/L MBC/CuO, 1.0 mM PS, 10 mg/L BPA. Free radical quenching and electron spin-resonance spectroscopy (ESR) experiments confirmed that both free radicals •OH, SO4•− and O2•− and non-radicals 1O2 were involved in the MBC/CuO reaction system. Cl− and NOM displayed negligible influence on the degradation of BPA, while HCO3− promoted the removal of BPA. In addition, the toxicity tests of BPA, MBC/CuO and the degraded BPA solution were conducted by the 5th instar silkworm larvae. The toxicity of BPA was reduced after the treatment in the MBC/CuO/PS system, and no obvious toxicity of the synthesized MBC/CuO composite was found in the toxicity evaluation experiments. This work provides a new value-added utilization of mulberry branches as a cost-effective and environmentally friendly PS activator.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3