Degradation of Diclofenac by Loaded Solid Superbase-Activated Persulfate

Author:

Shi Jiaqi12ORCID,Wang Lei1,Gao Shang1,Huang Jianbo1,Yang Hao13,Lu Hao14,Cao Shaohua1

Affiliation:

1. State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China

2. State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China

3. College of Environment, Hohai University, Nanjing 210098, China

4. College of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China

Abstract

Alkali-activated persulfate (PS) is widely used in situ in chemical oxidation processes; however, studies on the innovation of the alkali activation process are very limited. Two supported solid superbases, namely KNO3/γ-Al2O3 (KAl) and KNO3/SBA-15/MgO (KSM), respectively, were prepared and used to activate persulfate to degrade DCF in this work. The results showed that the superbases elevated the solution pH once added and thus could catalyze persulfate to degrade diclofenac efficiently above pH 10.5. The catalytic efficiency of KAl was close to that of sodium hydroxide, and that of KSM was the highest. The mechanism might be that, in addition to raising the solution pH, some potassium existed as K2O2, which had a strong oxidizing effect and was conducive to DCF removal. Hydroxyl, sulfate and superoxide radicals were all found in the reaction system, among which hydroxyl might play the most important role. The material composition ratio, common anion and humic acid all had some influences on the catalytic efficiency. A total of five intermediates were found in the KSM/PS oxidation system, and six oxidation pathways, which were hydroxylation, dehydrogen, dechlorination, dehydration, decarboxylation, and C-N bond breakage, might be involved in the reaction process. Several highly toxic oxidation products that should be paid attention to were also proposed.

Funder

National Natural Science Foundation of China

Innovative Team Project of Nanjing Institute of Environmental Sciences, MEE

State Key Laboratory of Pollution Control and Resource Reuse Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3