Preparation of Nickel-Based Bimetallic Catalyst and Its Activation of Persulfate for Degradation of Methyl Orange

Author:

Zhang Bo12,Li Jiale1,Xu Zhizhi1,Xu Xiaohong1,Wu Chundu1

Affiliation:

1. School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China

2. Changzhou Engineering and Technology Institute, Jiangsu University, Changzhou 213164, China

Abstract

In this research, a new catalyst for activating persulfate was developed by loading iron and nickel ions onto powdered activated carbon (PAC) for treating methyl orange, and the preparation process was optimized and characterized. The efficacy of the treatment was evaluated using the Chemical Oxygen Demand (COD) removal rate, which reflects the impact of various process parameters, including catalyst dosage, sodium persulfate dosage, and reaction pH. Finally, the recovery and reuse performance of the catalyst were studied, and the intermediate products were analyzed. The optimal conditions for preparing the activated sodium persulfate catalyst were determined to be as follows: a molar ratio of Fe3+ and Fe2+ to Ni of 4:1, a mass ratio of Fe3O4 to PAC of 1:4, a calcination temperature of 700 °C, and a calcination time of 4 h. This preparation led to an increase in surface porosity and the formation of a hollow structure within the catalyst. The active material on the surface was identified as nickel ferrite, comprising the elements C, O, Fe, and Ni. The magnetic property is beneficial to recycling. With the increase in catalyst and sodium persulfate dosage, the COD removal efficiency of the oxidation system increased first, and then, decreased. The catalyst showed good catalytic performance when the pH value was in the range of 3~11. Furthermore, Gas Chromatography–Mass Spectrometry (GC-MS) analysis indicated the complete oxidation of methyl orange dye molecules in the system. This result highlights the important role of the newly developed catalyst in activating persulfate.

Funder

Jiangsu Province Science and Technology Support Plan

Changzhou Sci&Tech Program

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3