Affiliation:
1. Virtual Lab Inc., 38 Wangsimni-ro, Seongdong-gu, Seoul 08826, Republic of Korea
Abstract
The threshold displacement energy (TDE) is an important measure of the extent of a material’s radiation damage. In this study, we investigate the influence of hydrostatic strains on the TDE of pure tantalum (Ta) and Ta–tungsten (W) alloy with a W content ranging from 5% to 30% in 5% intervals. Ta–W alloy is commonly used in high-temperature nuclear applications. We found that the TDE decreased under tensile strain and increased under compressive strain. When Ta was alloyed with 20 at% W, the TDE increased by approximately 15 eV compared to pure Ta. The directional-strained TDE (Ed,i) appears to be more influenced by complex ⟨i j k⟩ directions rather than soft directions, and this effect is more prominent in the alloyed structure than in the pure one. Our results suggest that radiation defect formation is enhanced by tensile strain and suppressed by compressive strain, in addition to the effects of alloying.
Funder
Ministry of Science, ICT and Future Planning
Ministry of Science and ICT in Korea
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献