Defect production in tungsten under sub-threshold energy irradiation: role of hydrogen and surface effects

Author:

Huang Hao-Xuan,Li Yu-Hao,Li Jin-Liang,Ma Fang-Fei,Ren Qing-Yuan,Liu Li-Min,Zhou Hong-BoORCID,Lu Guang-Hong

Abstract

Abstract Despite the low solubility of hydrogen isotopes (HIs) in tungsten (W), their concentration can reach up to ∼10 at.% after low-energy plasma irradiation. This is generally attributed to the vacancies that may accommodate excessive HIs. However, the kinetic energy of incident HIs transferred to W is far below the energy threshold to create a Frenkel pair, the underlying mechanism of defect production is still unclear. Here, we investigate the influence of H on the defect production in W using the molecular dynamic (MD) simulations. It is found that the threshold displacement energy (TDE) in bulk W slight decreases with the increasing of H concentration. This is due to the formation of H-vacancy complexes, which prevents the vacancy-interstitial recombination. More importantly, the H effects are significantly magnified in the surface region. On the one hand, the maximum kinetic energy transferred from 400 eV H to W can reach up to ∼21 eV due to the double-hit process, which is two times higher than that predicted by elastic collision model. On the other hand, the momentum transferred to W is completely random, including both the recoil direction upward and downward from the surface. Accordingly, the lowest TDE in W surface is only 15–21 eV at sub-surface layers with the depth of 6.7–11.1 Å, which is lower than the maximum kinetic energy transferred to W. Therefore, the low-energy HIs irradiation can create the defects in W surface directly. Our findings provide deep insight into defect production in W at sub-threshold energy and have wider implications for materials performance under low-energy ions irradiation.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3