Affiliation:
1. Department of Food Science and Biotechnology, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea
2. Food and Bio-Industry Research Institute, Inner Beauty/Antiaging Center, Kyungpook National University, Daegu 41566, Republic of Korea
Abstract
The Ajwa date (Phoenix dactylifera L., Arecaceae family) is a popular edible fruit consumed all over the world. The profiling of the polyphenolic compounds of optimized unripe Ajwa date pulp (URADP) extracts is scarce. The aim of this study was to extract polyphenols from URADP as effectively as possible by using response surface methodology (RSM). A central composite design (CCD) was used to optimize the extraction conditions with respect to ethanol concentration, extraction time, and temperature and to achieve the maximum amount of polyphenolic compounds. High-resolution mass spectrometry was used to identify the URADP’s polyphenolic compounds. The DPPH-, ABTS-radical scavenging, α-glucosidase, elastase and tyrosinase enzyme inhibition of optimized extracts of URADP was also evaluated. According to RSM, the highest amounts of TPC (24.25 ± 1.02 mgGAE/g) and TFC (23.98 ± 0.65 mgCAE/g) were obtained at 52% ethanol, 81 min time, and 63 °C. Seventy (70) secondary metabolites, including phenolic, flavonoids, fatty acids, and sugar, were discovered using high-resolution mass spectrometry. In addition, twelve (12) new phytoconstituents were identified for the first time in this plant. Optimized URADP extract showed inhibition of DPPH-radical (IC50 = 87.56 mg/mL), ABTS-radical (IC50 = 172.36 mg/mL), α-glucosidase (IC50 = 221.59 mg/mL), elastase (IC50 = 372.25 mg/mL) and tyrosinase (IC50 = 59.53 mg/mL) enzymes. The results revealed a significant amount of phytoconstituents, making it an excellent contender for the pharmaceutical and food industries.
Funder
Ministry of Science and ICT
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis