Influences of Fluorine Substituents on Iminopyridine Fe(II)- and Co(II)-Catalyzed Isoprene Polymerization

Author:

Zhu Guangqian,Zhang Xianhui,Zhao Mengmeng,Wang Liang,Jing Chuyang,Wang Peng,Wang Xiaowu,Wang QinggangORCID

Abstract

A series of iminopyridine complexes of Fe(II) and Co(II) complexes bearing fluorinated aryl substituents were synthesized for the polymerization of isoprene. The structures of complexes 3a, 2b and 3b were determined by X-ray diffraction analysis. Complex 3a contained two iminopyridine ligands coordinated to the iron metal center forming an octahedral geometry, whereas 2b adopted a chloro-bridged dimer, and 3b featured with two patterns of cobalt centers bridged via chlorine atoms. Complexes 2b and 3b represented rare examples of chlorine bridged bimetallic Co(II) complexes. The fluorine substituents effects, particularly on catalytic activity and polymer properties such as molecular weight and regio-/stereo-selectivity were investigated when these complexes were employed for isoprene polymerization. Among the Fe(II)/methylaluminoxane (MAO) systems, the 4-CF3 substituted iminopyridine Fe(II) complex 1a was found as a highly active isoprene polymerization catalyst exhibiting the highest activity of 106 g·(mol of Fe)−1·h−1. The resultant polymer displayed lower molecular weight (Mn = 3.5 × 104 g/mol) and moderate polydispersity index (PDI = 2.1). Furthermore, the ratio of cis-1,4-/3,4 was not affected by the F substituents. In the series of Co(II)/AlEt2Cl binary systems, complexes containing electron-withdrawing N-aryl substituents (R = 4-CF3, 2,6-2F) afforded higher molecular weights polyisoprene than that was obtained by the complex containing electron-donating N-alkyl substituents (R = octyl). However, ternary components system, complex/MAO/[Ph3C][B(C6F5)4] resulted in low molecular weight polyisoprene (Mn < 2000) with high trans-1,4-unit (>95%).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3