Effect of SiO2 Content on the Extended Creep Behavior of SiO2-Based Wood-Inorganic Composites Derived via the Sol–Gel Process Using the Stepped Isostress Method

Author:

Hung Ke-Chang,Wu Jyh-Horng

Abstract

In this study, methyltrimethoxysilane (MTMOS) was used as a reagent to prepare SiO2-based wood-inorganic composites (WICSiO2) via the sol-gel process, and subsequently, the extended creep behaviors of WICSiO2 with weight percent gains (WPGs) of 10%, 20%, and 30% were estimated using the stepped isostress method (SSM). The results revealed that the density of all samples ranged from 426 to 513 kg/m3, and no significant difference in the modulus of elasticity (MOE) was noted among all of the samples (10.5–10.7 GPa). However, the MOR of WICSiO2 with a WPG of 20% (102 MPa) was significantly greater than that of untreated wood (87 MPa). In addition, according to the result using the SSM, the SSM-predicted creep master curve fitted well with the experimental data for the untreated wood and WICSiO2. This result demonstrated that the SSM could be a useful method to evaluate long-term creep behaviors of wood and WICSiO2. Furthermore, the activation volume (V*) of the specimens was calculated from the linear slope of Eyring plots, and the resulting V* of all of the WICSiO2 (0.754–0.842 nm3) was lower than that of untreated wood (0.856 nm3). On the other hand, the modulus reduction of untreated wood showed 39%, 45%, 48%, and 51% at 5, 15, 30, and 50 years, respectively. In contrast, the modulus reduction of the WICSiO2 with a WPG of 10% decreased to 25%, 31%, 35%, and 38% at 5, 15, 30, and 50 years, respectively. Similar trends were also observed for other WICSiO2 with different WPGs. Of these, the WICSiO2 with a WPG of 20% exhibited the lowest reduction in time-dependent modulus (31%) over a 50-year period. Accordingly, the creep resistance of the wood could be effectively enhanced under the MTMOS treatment.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3