Bimetallic Aluminum 5,6-Dihydro-7,7-dimethyl quinolin-8-olates as Pro-Initiators for the ROP of ε-CL; Probing the Nuclearity of the Active Initiator

Author:

Zhang Qiurui,Zhang Wenjuan,Solan Gregory,Liang Tongling,Sun Wen-HuaORCID

Abstract

Six examples of aluminum 5,6-dihydro-7,7-dimethylquinolin-8-olates, [{2-R1-7,7-Me2-8-R2C9H6N-8-O}AlR32]2 (R1 = R2 = H, R3 = Me C1; R1 = R2 = H, R3 = Et C2; R1 = R2 = H, R3 = i-Bu C3; R1 = Cl, R2 = H, R3 = Me C4; R1 = H, R2 = R3 = Me C5; R1 = Cl, R2 = R3 = Me C6), have been prepared by treating the corresponding pro-ligand (L1–L4) with either AlMe3, AlEt3 or Al(i-Bu)3. All complexes have been characterized by 1H and 13C NMR spectroscopy and in the case of C1 and C4 by single crystal X-ray diffraction; dimeric species are a feature of their molecular structures. In the presence of PhCH2OH (BnOH), C1–C6 displayed good control and efficiency for the ROP of ε-CL with almost 100% conversion achievable in 10 min at 90 °C; the chloro-substituted C4 and C6 notably exhibited the lowest activity of the series. However, in the absence of BnOH, C1 showed only low activity with 15% conversion achieved in 30 min forming a linear polymer capped with either a methyl or a L1 group. By contrast, when one or more equivalents of BnOH was employed in combination with C1, the resulting catalyst was not only more active but gave linear polymers capped with BnO end-groups. By using 1H and 27Al NMR spectroscopy to monitor solutions of C1, C1/BnOH and C1/BnOH/10 ε-CL over a range of temperatures, some support for a monomeric species being the active initiator at the operational temperature is presented.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3