3D-Printing of Microfibrous Porous Scaffolds Based on Hybrid Approaches for Bone Tissue Engineering

Author:

Kankala Ranjith,Xu Xiao-Ming,Liu Chen-Guang,Chen Ai-ZhengORCID,Wang Shi-Bin

Abstract

In recent times, tremendous progress has been evidenced by the advancements in various methods of generating three-dimensional (3D) porous scaffolds. However, the applicability of most of the traditional approaches intended for generating these biomimetic scaffolds is limited due to poor resolution and strict requirements in choosing materials. In this work, we fabricated 3D porous scaffolds based on the composite inks of gelatin (Gel), nano-hydroxyapatite (n-HA), and poly(lactide-co-glycolide) (PLGA) using an innovative hybrid strategy based on 3D printing and freeze-drying technologies for bone tissue engineering. Initially, the PLGA scaffolds were printed using the 3D printing method, and they were then coated with the Gel/n-HA complex, yielding the Gel/n-HA/PLGA scaffolds. These Gel/n-HA/PLGA scaffolds with exceptional biodegradation, mechanical properties, and biocompatibility have enabled osteoblasts (MC3T3-E1) for their convenient adhesion as a layer and have efficiently promoted their growth, as well as differentiation. We further demonstrated the bone growth by measuring the particular biomarkers that act as key players in the ossification process (i.e., alkaline phosphatase (ALP), osteocalcin (OC), and collagen type-I (COL-I)) and the total proteins of the MC3T3-E1 cells. We anticipate that the convenient generation of highly porous 3D scaffolds based on Gel/n-HA/PLGA fabricated through an innovative combinatorial approach of 3D printing technology and freeze-drying methods may undoubtedly find widespread applications in regenerative medicine.

Funder

National Natural Science Foundation of China

Huaqiao University

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 62 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3